
Case Study: Book Abacus, Book Recommendations Using
Hypertable and the Linked Open Data Cloud

Azhar Jassal

Book Abacus, United Kingdom – website: www.bookabacus.com

KEYWORDS: Hypertable, BigTable, Apache HBase, Apache Hadoop, Apache Nutch, Apache Jena, RDF, DBpedia,
Wikipedia, Semantic Web, web crawling, data mining

ABSTRACT: Book Abacus is a data science project that crawls the web to discover readily available books, those that can
be purchased. These books are presented to users via recommendation pages that are generated using human-interests
gathered from the Linked Open Data cloud. For its data repository, it uses Hypertable, a BigTable column-oriented store.

Discovering books on the web may provide the best es-
timates on how many actually exist. In 2010 Google used
their index of the web to discover almost 130 million
books (Taycher, 2010).

Book Abacus discovers in the same manner, by crawling
the web. We are primarily interested in gathering data
about books that that are available to purchase, this is the
body of literature that is readily accessible to billions of
people. We believe this data set, of the books that are
available for purchase on the web has usages aside from
price comparison and market intelligence. An example is
data science exercises exploring the vastness of the book
space and the body of readily accessible literature.

The Book Abacus website provides availability and pric-
ing information for over 13.5 million books, aggregated
from 50 million offers discovered on the web from both
physical and digital booksellers around the world. This
data indicates which books are accessible to particular
regions of the world at a given time. Books are indexed
using 4 million detailed human interests (topic recom-
mendation pages). The home page displays a selection of
books for topics that appear in UK and US news stories,
updating every half an hour. Around 1 million price up-
dates occur daily, fed by our crawling activities (these
statistics are as of January 2015).

Figure 1. Recommendation page for a topic, in this in-
stance for “Apollo 11”

To construct the topic recommendation pages (fig. 1),
Book Abacus must (1) discover a large number of books
that are available to purchase and (2) discover a large
number of human interests.

To gather book information, we use an Apache Nutch-
based crawler (bot). The behavior of our bot is directed
using domain definitions. Based upon Apache Hadoop,
the crawl cycle runs as a set of MapReduce jobs in the
cloud. Where a set of data items have been discovered
that meet our perception of what a book is and business
criteria is met, such as purchasing availability, the data
items are recorded with provenance information. Using
Apache Nutch in this manner provides us with a highly
scalable data mining capability. The data collected by bot
nodes is shipped to Hypertable where it is aggregated and
enriched using domain models to present “book” instanc-
es that are consumed by downstream systems.

Figure 2. Extract of the Linked Open Data Cloud
(Schmachtenberg, Bizer, & Jentzsch, 2014)

To gather human interests, Book Abacus consumes da-
ta from the LOD cloud (fig. 2). Linked data is published as
RDF. Datasets are typically downloadable en-masse (data
snapshots). The LOD cloud contains data sets from gov-
ernment, non-profit and commercial organizations. The
LOD cloud is a rich source of human interests. The center
point of the LOD cloud is DBpedia, a structured extrac-
tion of Wikipedia, downloadable as a RDF data set.

http://www.bookabacus.com/
http://www.bookabacus.com/
http://www.bookabacus.com/
http://www.bookabacus.com/topic/apollo-11

2

DBpedia contains structured descriptions of conceptual
“things” that are generated from Wikipedia articles. As
articles are generally entity-centric (one article is about
one conceptual “thing”), DBpedia presents a rich, multi-
language source of human interests that are used to seed
our topic recommendations. Due to its source DBpedia is
indirectly human curated. Beyond the descriptions, the
link graph within DBpedia captures a crowd sourced hu-
man perspective on topic relationships. We analyze this
link graph to produce “related” book recommendations.
This semantic analysis enables recommendations in the
long tail, where purchasing data may not enable heuristic
recommendation models (e.g. “people who viewed this
also viewed”, “people who bought this also bought”).

Consumers of data sets from the LOD cloud typically
use native RDF databases (triplestores) and SPARQL (a
query language for RDF) to persist and interact with the
underlying data. Book Abacus uses the BigTable store
Hypertable, its query language HQL and MapReduce. It is
the central data repository of Book Abacus. Outside of
Hypertable we use a variety of natural language pro-
cessing (NLP) and search technologies to enrich book
data and produce our topic recommendation pages.

BOOK ABACUS AND HYPERTABLE

In order to determine the essential features Book Aba-
cus required from a column-oriented store, we undertook
a 6-month period of analysis, studying the data our bot
was collecting and the data gathered from the LOD cloud.
In order to maximize data value it became apparent that
the ability to query using orthogonal properties was vital
to exploiting relationships. This made secondary indexes
an essential feature. Using secondary indexes, data can be
arranged appropriately at load-time to enable fast query-
time performance when selecting from properties other
than row (primary) key. The advantage of being able to
specify secondary indexes on columns is that additional
cost is only incurred for the relationships our use-cases
exploit. This is important in the context of persisting and
querying a large amount of RDF where every fact presents
a relationship.

Secondary indexes enable fine-grained control over the
RDF properties that are indexed and those that are just
stored, in similar fashion to how a field in an Apache
Lucene document can be set as stored, indexed or both.
Triplestores generally index each property in the same
manner, which results in low-value properties bearing the
same cost as high-value properties. While treating prop-
erties equivalently facilitates discovery, significant cost
can be unnecessarily incurred due to under utilization.
We prefer a less-is-more approach, where the cost of eve-
ry data item is attributable. For example, if we discover a
property joining a person with a birthplace and determine
that there is a use-case for that relationship, we can set a
secondary index on that joining property and build a que-
ry to exploit it. This gives us significant control over the

data we are managing and the subsequent cost of its utili-
zation in delivering use-cases.

Hypertable is a high performance column-oriented
store. This case study discusses how we use (1) secondary
indexes for querying via orthogonal properties and data
integration and (2) atomic counters for counting relation-
ships within RDF data sets and subsequent topic ranking.

Storing a RDF triple in a column-oriented store is
straightforward. There is a one-to-one mapping between
a triple and a column. Triples are made of three parts, the
subject, predicate and object. Columns are composed of a
row key, the column, column qualifier, cell value and last
modified time. With basic mapping, a single column can
accommodate a RDF triple. The subject of the triple be-
comes the row key. The cell value is the object. Depend-
ing upon the value of the relationship, we determine how
it is to be exploited and select an appropriate column
from the table schema to match our usage, e.g. using a
store-only or value secondary-index column. The predi-
cate itself is stored as the column qualifier. Multiple col-
umn types can exist in the schema. These are reused, for
example: columns that only store data (used for low-value
properties) and those with secondary-indexes (used for
high-value properties). The last modified time is set to
present time, but can be overridden. Last modified times
are used for data provenance, e.g. recording when the
data item was seen by our bot. This allows us to calculate
“last seen” times per individual data item.

Figure 3. Focused book details, for “Failure Is Not An Op-
tion” by Gene Kranz, purchasing information on the right

Hypertable provides native secondary indexes (intro-
duced in 0.9.5.6, improved significantly in 0.9.8.0) on
both column qualifiers and cell values. Querying data
using orthogonal properties is a difficult problem for col-
umn-oriented stores. Numerous implementations exist to
provide secondary indexes within HBase, but each has
limitations and drawbacks. Hypertable provides a clean
native implementation that can be used out-of-the-box.

http://www.bookabacus.com/9781439148815
http://www.bookabacus.com/9781439148815

3

We utilize secondary indexes to quickly integrate book
data at load-time from a large number of continuously
changing sources. As the data has been arranged appro-
priately at load-time, we are able to retrieve an integrated
model of a book for book detail pages (fig. 3) with mini-
mum computational cost at query-time. The book detail
pages offer purchasing information and compound book
details to provide multi-source attribution.

Using standard book industry identifiers and querying
orthogonal properties, we are able to inexpensively inte-
grate book data using Hypertable. We retrieve the inte-
grated model from Hypertable and instantiate a weighted
provenance model of a book instance. The model is con-
structed using similarity and duplicate content analysis,
where every individual data item per source is a vote for
its correctness. This allows us to discover the most used
data properties that describe a book, and the rare, unique
and false cases. Additionally, we are able to influence the
weighting factors for individual sources in order to make
sources more or less authoritative.

Every data item in the weighted provenance model is
annotated with data that includes the source URL of
where it was found and the time seen. We can therefore
attribute each individual data item up to the view layers
of our consuming applications. Business rules can also be
implemented to enable dynamic weighting. An example
of dynamic weighting is influencing data from booksellers
in the same country of publication as a given title (prefer-
ring Swedish book data sources for a Swedish book).

Figure 4. Focused book details, showing book data com-
pounding and enrichment (topic highlights)

The book detail pages display data items ranked by per-
ceived correctness (fig. 4). Below each data item, attribu-
tion is placed providing a link to where the data was seen
and how long ago from present time. Descriptions are
enriched using NLP and entity extraction (note highlights
in fig. 4). The corpus for the entity extractors are the hu-
man interests gathered from the LOD cloud. In the exam-
ple shown in fig. 4, the associated topics are: Failure Is

Not An Option, NASA, Gene Kranz and United States.
When a user clicks on an inline highlight, they are taken
to the corresponding topic recommendation page. This
enables a user to traverse the human-interest link graph
through book descriptions. The recommendations are
scored using a relevance algorithm for which a key factor
is incoming and outgoing link count. Hypertable facili-
tates this by providing an atomic counter column type.

Atomic counters are incremented, decremented or re-
set by inserting a value with a positive, negative or zero
integer. As data is loaded into Hypertable, values are writ-
ten to counter columns. Maintaining counts at load-time
avoids expensive IO-bound scans that have to comb
through large amounts of data. The logic to increment or
decrement counters exists within the loader. For highly
interlinked RDF data sets, we find it valuable to count the
number of incoming and outgoing links to and from each
resource. These counts and others are factored in produc-
ing related topic recommendations.

Figure 5. Focused thumbnail grid showing related topics
for George H. W. Bush

Thumbnail grids (fig. 5) appear on topic recommenda-
tion and book detail pages to present related topics
ranked using a score that factors counts held within
Hypertable. Using JavaScript and AJAX calls, the web
browser asynchronously fetches related thumbnails. The
response from the server includes a HTTP header con-
taining the related score of that topic. The thumbnail and
associated link is then inserted into the grid, with the
position selected by a score comparator that reads scores
from the response headers. Related topic scores also in-
fluence the contents of the homepage, which is regener-
ated every half an hour. It contains topics that are
deemed to be popular at that time (popular topics) and a
selection of recommended books for each.

To identify popular topics we gather news stories from
UK and US sources. Each news story is processed using
the same NLP and entity extraction components that are
used to enrich book descriptions with inline highlighting

4

(discussed earlier). The resulting associated topics from
current news stories are deemed popular topics. An algo-
rithm is used to select books for those topics that factors
various counts. These include the number of present of-
fers and even property specific criteria, e.g. a count of
known cover thumbnails URL’s. These counts are main-
tained in Hypertable counter columns and influence the
selection of books that appear on the home page. Every
story is given an aggregated topic score, for example a
story about a US election may have the associated topics:
‘Barack Obama’ and ‘United States’.

Stories and books about such topics are likely to appear
towards the top of the home page, as the aggregated topic
score is likely to be significant. Such scoring provides in-
teresting metrics. For example, uncovering opportunities
for authors by finding topics for which few books are
presently available or were ever written. Such data science
exercises may provide interesting guidance to authors and
publishers looking to discover present gaps and oppor-
tunity areas. We plan to undertake such data science ex-
ercises in the coming future.

Figure 6. Home page, showing news stories and associat-
ed topic thumbnails that link to recommendation pages

The home page is designed to be highly reactive to
world events. It will display up to 40 news stories, associ-
ated topic thumbnails and 6 recommended books for
each. The number of news stories and books displayed to
an end-user depends upon device screen size. The home
page is responsive; users accessing the site from mobile
devices will be presented fewer recommended books per
news story in order to display clear relationships and
maintain user-experience. The books recommended for
each topic is based on numerous factors that include rele-
vance, purchasing availability and even the number of

known thumbnail covers. Filters exclude books that may
be inappropriate for all-ages; books that seem too similar
when summarized and duplicate suggestions. Some book
suggestions that appeared on the home page in January
2015 include those for topics: Ebola Virus, Prince Andrew,
North Korea/ Sony, Elon Musk/ SpaceX, Li Ka-shing, Bill
Clinton, Tom Brady and King Abdullah of Saudi Arabia.

FUTURE WORK

We continue to identify high-value data science exer-
cises that can be undertaken in the short-to-medium
term by actively studying the data gathered by our bot. In
the immediate future we plan to increase our crawling
capacity, improve the methods by which we generate rec-
ommendations and deliver subject recommendation pag-
es (to complement the topic based). For example, topic
recommendation pages for the boxers “Mike Tyson” and
“Floyd Mayweather” exist, but using DBpedia, YAGO and
OpenCyc we can create high-level subject pages that offer
books about “American Boxers who won world titles”.
These pages will also interestingly interlink topic pages.

We will scale our data handling capacity in order to fa-
cilitate increasing data exercises. This will involve scaling
our Hypertable cluster. Apache Jena, an RDF and seman-
tic web Java library used by Book Abacus to stream RDF
to and from Hypertable is to incorporate support for the
utilization of Hadoop for RDF processing in an upcoming
release (patch submitted by Cray Inc.). We plan to use
that functionality within Apache Jena to improve our pre-
processing of data sets gathered from the LOD cloud,
running jobs before data is imported into Hypertable.

AUTHOR INFORMATION

Azhar (Az) Jassal is a London, UK-
based data engineer. Prior to Book
Abacus, he worked for: JPMorgan
(corporate and investment bank),
Metropolitan Police (Digital Polic-
ing), the science journal Nature
and the Book Depository (now an
Amazon company).

ABBREVIATIONS

RDF resource description framework. LOD linked open data.
HQL hypertable query language. NLP natural language pro-
cessing.

REFERENCES

Schmachtenberg, M., Bizer, C., & Jentzsch, A. (2014, August 30).

Linking Open Data cloud diagram 2014. Retrieved January 23,
2015, from Linking Open Data cloud: http://lod-cloud.net/

Taycher, L. (2010, August 5). Books of the world, stand up and be
counted! All 129,864,880 of you. Retrieved January 23, 2015, from
Google Books Search:
http://booksearch.blogspot.com/2010/08/books-of-world-stand-
up-and-be-counted.html

