
W H I T E PA P E R - MA R C H 2012

Hypertable Architecture Overview

Hypertable is an open source, scalable NoSQL database modeled after Bigtable, Google’s proprietary scalable

database. It is written in C++ for optimum performance and is based on a design that has been proven in the

real world for a wide variety of workloads. Hypertable is powerful scalable database infrastructure that can

serve as the database underpinnings for next-generation big data applications. In this paper we provide an

overview of the Hypertable architecture.

© 2012 Hypertable, Inc.

Contents

SYSTEM ARCHITECTURE� 1

COMPARISON TO A RELATIONAL DATABASE� 1

HYPERTABLE DATA REPRESENTATION� 2

NAMESPACES� 3

ACCESS GROUPS� 3

CLIENT LIBRARY� 3

RANGESERVER INSERT HANDLING� 3

QUERY ROUTING� 4

RANGESERVER QUERY HANDLING� 4

FILESYSTEM CELLSTORE FORMAT� 5

ADAPTIVE MEMORY ALLOCATION� 5

SCALING AND LOAD BALANCING� 5

CONCLUSION� 6

© 2012 Hypertable, Inc. Page 1

SYSTEM ARCHITECTURE

Hypertable is a high performance, open source, massively
scalable database modeled after Bigtable, Google’s
proprietary scalable database managment system. Hypertable
is designed to utilize a scalable and highly available file system
such as Hadoop (HDFS), where high availability is achieved
by replicating file data across multiple machines. (HDFS is an
open source version of the proprietary Google file system,
GFS.)

Master - The master handles all Meta operations such as
creating and deleting tables. Client data does not move
through the Master, so the Master can be down for short
periods of time without clients being aware. The master is
also responsible for detecting range server failures and re-
assigning ranges if necessary. The master is also responsible
for range server load balancing. Current design provides
a single Master process, but high availability is achieved
through hot standbys.

Range Server - Range servers are responsible for managing
ranges of table data, handling all reading and writing of data.
They can manage up to potentially thousands of ranges and
are agnostic to the set of ranges that they manage or the
tables of which they’re a part. Ranges can move freely from
one range server to another, an operation that is mostly
orchestrated by the Master.

DFS Broker - Hypertable is capable of running on top of any
filesystem. To achieve this, Hypertable has abstracted the
interface to the filesystem by sending all filesystem requests
through a Distributed File System (DFS) broker process.
The DFS broker provides a normalized filesystem interface
and translates normalized filesystem requests into native
filesystem requests and vice-versa. Currently, DFS brokers are
available for HDFS, MapR, Ceph, KFS, and local (for single-
machine installations running on top of a local filesystem).

Hyperspace - This is Hypertable’s equivalent to Google’s
Chubby service. Hyperspace is a highly available lock
manager and provides a filesystem for storing small amounts
of metadata. Exclusive or shared locks may be obtained on
any created file or directory. High availability is achieved by
running in a distributed configuration with replicas running
on different physical machines. Consistency is achieved
through a distributed consensus protocol. Google refers to
Chubby as, “the root of all distributed data structures” which is
a good way to think of Hyperspace.

COMPARISON TO A RELATIONAL
DATABASE

Hypertable is similar to a relational database in that it represents
data as tables of information, with rows and columns, but that’s
about as far as the analogy goes. The following list provides some
important differences. In Hypertable,

•	 Row keys are UTF-8 strings

•	 There is no support for data types (data values are
treated as opaque byte sequences)

•	 There is no support for joins

•	 There is no support for transactions

•	 New cell data values result in a new row entry (older
entries may remain in the table)

Tables in Hypertable can be thought of as massive lists of data
records, sorted by a single primary key, the row key.

	

The diagram below provides an overview of the Hypertable system
followed by a brief description of each system component.

© 2012 Hypertable, Inc. Page 2

TABLE LAYOUT CONCEPT

A relational database assumes that each column defined in
the table schema can have a value in each row that is present
in the table, so every row contains data space for every
specified column. NULL values are often represented with a
special marker (e.g. \N). The primary key and column identifier
are implicitly associated with each cell based on its physical
position within the layout. The following diagram illustrates
how a relational database table might be stored:

	

Hypertable (and Bigtable) takes its design from the Log
Structured Merge Tree. It flattens out the table structure into
a sorted list of key/value pairs, each one representing a cell in
the table. The key includes the full row and column identifier,
which means each cell is provided complete addressing
information. Cells that are NULL are simply not included in the
list which makes this design particularly well-suited for sparse
data. The following diagram illustrates how Hypertable would
store the above table data on-disk:

	

Though there can be a fair amount of redundancy in the row
keys and column identifiers, Hypertable employs key-prefix
and block data compression which helps to reduce the effects.

HYPERTABLE DATA
REPRESENTATION

As described above, Hypertable stores data as tables of
information. Each row in a table has cells containing related
information, and each cell is identified, in part, by a row key
and column name. Support for up to 255 column names is
provided when the table is created. Hypertable provides two
additional features:

•	 column qualifier - The column names defined in the
table schema actually represent column families.
Applications may supply an optional column qualifier
formatted as family:qualifier, with each distinct
qualifier representing a column instance belonging to
the column family. An unlimited number of uniquely
named instances of a column family can be defined
by the application. Column data is stored in a sparse
format such that wwhile one row may have millions
of qualified column instances within a column family,
another row might have none or just a few.

•	 timestamp - This is a 64-bit field associated with each
cell that allows for different cell versions. The value
represents nanoseconds since the Unix epoch and
can be supplied by the application or auto-assigned
by Hypertable. The number of versions stored is
configured in the table schema and the number
of versions returned can be specified in the query
predicate. Versions are stored in reverse-chronological
order, so that the newest version of the cell is returned
first when queried.

© 2012 Hypertable, Inc. Page 3

To illustrate how data is represented in Hypertable, consider
an example taken from a web crawler that stores information
for each page that it crawls. The first table represents how the
data might look stored in the style of a relational database
table.

	

When the above data is stored by Hypertable, a timestamp
is added and it is stored as sorted lists of key/value pairs as
illustrated in the diagram below. (The diagram shows up to
three timestamped versions of each cell, the older versions
having been stored from previous crawls. When queried, the
most recent cell version is returned first.)

crawldb Table

com.facebook.www title 2008-02-11 15:14:01
com.facebook.www title 2008-02-03 19:27:57
com.facebook.www title 2008-01-22 08:46:28
com.facebook.www content 2008-02-11 15:14:01
com.facebook.www content 2008-02-03 19:27:57
com.facebook.www content 2008-01-22 08:46:28
com.facebook.www anchor:com.apple.www/ 2008-02-11 15:14:01
com.facebook.www anchor:com.apple.www/ 2008-02-03 19:27:57
com.facebook.www anchor:com.apple.www/ 2008-01-22 08:46:28
com.facebook.www anchor:com.redherring.www/ 2008-02-11 15:14:01
com.facebook.www anchor:com.redherring.www/ 2008-02-03 19:27:57

Facebook | Home
Facebook | Home
Facebook | Home

Facebook
Facebook
Facebook
Facebook
Facebook

<!DOCTYPE html PUBLIC "-//W3C//DTD...
<!DOCTYPE html PUBLIC "-//W3C//DTD...
<!DOCTYPE html PUBLIC "-//W3C//DTD...

com.yahoo.www title 2008-02-10 21:12:09
com.yahoo.www title 2008-02-04 03:46:22
com.yahoo.www title 2008-01-22 08:46:28
com.yahoo.www content 2008-02-10 21:12:09
com.yahoo.www content 2008-02-04 03:46:22

Yahoo!

<html><head><meta http-equiv="Content-...
<html><head><meta http-equiv="Content-...

Yahoo!
Yahoo!

... ...

key value

NAMESPACES

Namespaces logically group tables together and are
analogous to the directory hierarchy in a modern filesystem.
They allow the user to organize tables into related groups,
keeping table names simple, as table names need only be
unique within the namespace in which they are created.

ACCESS GROUPS

Access Groups provide a way for the user to control the
physical storage of column data to optimize disk I/O.
Access Groups are defined in the table schema and instruct
Hypertable to physically store all data for columns within the
same access group together on disk. This feature allows the
user to optimize queries for columns that are accessed with
high frequency by reducing the amount of data transferred
from disk during query execution. Disk I/O then is limited to
just the data from the access groups of the columns specified
in the query

CLIENT LIBRARY

The Client Library provides the application programming
interface (API) that allows an application to communicate
with Hypertable. This library is linked into each Hypertable
application and handles query routing.

RANGE SERVER INSERT HANDLING

As noted earlier, Range servers are responsible for managing
ranges of table data (contiguous table rows sorted by key),
handling all reading and writing of data. The following
diagram illustrates how inserts are handled inside the
RangeServer.

DFS

CellCache

Commit
Log

INSERT

Step 3: Acknowledge

Step 2: Add to map

Step 1: Commit Log
Background

Maintenance Threads

CellStore

Note that the diagram also illustrates the use of the column qualifier.

© 2012 Hypertable, Inc. Page 4

•	 Step 1: Commit Log - Inserts are appended to
the Commit log which resides in the distributed
filesystem (DFS) and followed by a sync operations
that tells the filesystem to persist any buffered writes
to disk. If multiple insert requests are pending, or
a GROUP_COMMIT_INTERVAL is configured for the
table, then the sync operation is performed after
multiple Commit log appends to improve throughput.

•	 Step 2: Add to map - The inserts are added to the
in-memory CellCache (equivalent to the Memtable in
Bigtable).

•	 Step 3: Acknowledge - Acknowledgement is sent
back to the application.

•	 Background Maintenance Threads - Over time, as
the CellCaches fill memory, background maintenance
threads will “spill” the in-memory CellCache data to
on-disk CellStore files which frees up memory inside
the RangeServer, allowing it to accept more inserts.

This design makes Hypertable writes durable and consistent
because inserts are not acknowledged until insert has been
successfully written to the Commit log.

QUERY ROUTING

The following illustrates and describes the data structures that
support the query routing algorithm that sends queries to the
relevant RangeServers.

	

The query routing algorithm makes use of a special table
called sys/METADATA that contains a row for each range
in the system. There is a column Location that indicates
which RangeServer is currently serving the range. Though
the diagram shows IP addresses in the Location column,
the system stores a proxy name for the RangeServer in that
column so that the system can be run on public clouds such
as Amazon’s EC2 and operate correctly in the face of server
restarts and IP address changes. A two-level hierarchy is
overlaid on top of the METADATA table. The first range is the
ROOT range which contains pointers to the second-level
ranges which, in turn, contain pointers to the USER ranges,
which are the ranges that make up regular user or application
defined tables.

RANGESERVER QUERY HANDLING

The following diagram illustrates how queries are handled
inside the RangeServer.

CellCache

QUERY

Merge
Scanner

CellStore CellStore CellStore

Memory

Filesystem

 Key / Value Pairs

Data for a range can reside in the in-memory CellCache as
well as in some number of on-disk CellStores (see following
section). To evaluate a query over a table range, the
RangeServer must create a unified view of the data, which
it does through the use of a MergeScanner object, which
merges together the sorted key/value pairs coming from the
CellCache and from the CellStores. This unified stream of key/
value pairs is then filtered to produce the query results.

© 2012 Hypertable, Inc. Page 5

FILESYSTEM CELLSTORE FORMAT

Over time, the RangeServers will write in-memory CellCaches
to on-disk files, called CellStores, whose format is as follows:

•	 Compressed blocks of cells (key/value pairs) -
This section consists of a series of sorted blocks of
compressed sorted key/value pairs. By default, the
compressed blocks are approximately 64KB in size,
but the size is configurable. These blocks are the
minimum unit of data transfer from disk.

•	 Bloom Filter - The compressed blocks of key/
value pairs are followed by a bloom filter. This is a
probabilistic data structure that describes the keys
that exist (with high likelihood) in the CellStore and
which also signals if a key is definitively not present.
This helps the RangeServer avoid unnecessary block
transfer and decompression.

•	 Block Index - After the bloom filter comes the block
index. This index lists, for each block, the last key in
the block followed by the block offset.

•	 Trailer - At the end of the CellStore is the trailer. The
trailer contains general statistics about the CellStore

Compressed Block of Key/Value Pairs

Compressed Block of Key/Value Pairs

Compressed Block of Key/Value Pairs

com.anxietyculture.www 0

com.google.code 67823

org.apache.www 137057

Bloom Filter

0

67823

137057

Trailer

CellStore File Format

ADAPTIVE MEMORY ALLOCATION

The following diagram illustrates how the RangeServer adapts
its memory usage based on changes in workload.

Cell Cache

Block Cache

Write Heavy Workload

Block Cache

Read Heavy Workload

Cell Cache Shadow
Cache

Query
Cache

Query
Cache

Bloom
Filter

Block
Index

Shadow
Cache

Bloom
Filter

Block
Index

Under write-heavy workload, the RangeServer will give more
memory to the CellCaches so that they can grow as large as
possible, which minimizes the amount of spilling and merging
work required. Under read-heavy workload, the system gives
most of the memory to block cache, which significantly
improves query throughput and latency.

SCALING AND LOAD BALANCING

Hypertable typically runs on a cluster of slave server machines,
with a RangeServer process running on each slave. Initially,
a table is assigned to be managed by a single RangeServer.
As entries are added over time, Hypertable will break these
tables into ranges of rows and distribute the ranges to other
RangeServer processes.

Increasing cluster capacity can be accomplished by simply
adding one or more new commodity servers and starting
RangeServer processes on the new machines. Hypertable
will detect that there are new servers available with plenty of
spare capacity and will automatically reconfigure and migrate
ranges from the relatively overloaded machines onto the new
ones. This range migration process has the effect of balancing
load across the entire cluster and utilizing the added capacity.

© 2012 Hypertable, Inc. Page 6

CONCLUSION

Hypertable is a scalable NoSQL database modeled after
Bigtable, Google’s proprietary scalable database. It is open
source and freely available to anyone who wants to use it.
Implemented in C++ for optimum performance, Hypertable
can deliver scalable database capacity on a fraction of the
hardware as compared to competing implementations. This
means Hypertable can be run with less equipment, less power
consumption, and less datacenter real estate, which translates
to lower cost. Hypertable has been successfully deployed in
a wide array of sectors including, Automotive Engineering,
Biotechnology, Financial, and Internet. For more information,
see www.hypertable.com.

PHONE +1 650.401.6038
FAX +1 650.230.7176

info@hypertable.com

702 Marshall St.
Suite 615

Redwood City, CA 94063

http://www.hypertable.com
mailto:info%40hypertable.com?subject=White%20Paper%20Inquiry

